# Point

Constructs a point.

## Syntax

```point(Real, Real)
```
```point(Real, Real, Real)
```
```point()
```
```point(Complex)
```
```point(Vector | List)
```
```point(Real)
```
```point(Line)
```
```point(Line, Real)
```
```point(Segment, Real)
```
```point(Triangle)
```
```point(Triangle, Real)
```
```point(Circumference)
```
```point(Ellipse | Parabola | Hyperbola, Real)
```
```point(Polygonal | Polygon)
```
```point(Polygonal | Polygon, Real)
```
```point(Arc, Real)
```
```point(Curve | Polar_curve, Real)
```

## Description

Constructs a point with coordinates the given numbers.

Constructs a point with coordinates the given numbers.

Constructs the point $\left(0,0\right)$.

Given a complex number in binomial form, constructs a point with coordinates real and imaginary part.

Given a vector or a list with two or three elements, reals, constructs a point with such coordinates.

Given a real number $x$, constructs the point $\left(x,0\right)$.

Returns a point of the given line.

Given a line $y\left(x\right)$ and real number ${x}_{0}$, returns the point $y\left({x}_{0}\right)$.

Given a segment $\overline{PQ}$ and a real number $\lambda$, returns the point $\lambda \stackrel{\to }{PQ}$.

Returns a point of the triangle.

Returns a specific point of the triangle determined by the real number.

Returns a point of the circumference.

Given a circumference $\left(x-{x}_{0}{\right)}^{2}+\left(y-{y}_{0}{\right)}^{2}={r}^{2}$ and a real number $\alpha$, returns the point $\left({x}_{0}+r\mathrm{cos}\alpha ,{y}_{0}+r\mathrm{sin}\alpha \right)$.

Returns a specific point of the ellipse/parabola/hyperbola determined by the real number.

Returns a point of the polygonal or polygon.

Returns a specific point of the polygonal or polygon.

Returns a specific point given by the real number (the angle) of an arc.

Given a real number ${x}_{0}$ and a curve $f\left(x\right)$, returns a point with coordinates $\left({x}_{0},f\left({x}_{0}\right)\right)$ in 2D, or $\left({f}_{1}\left({x}_{0}\right),{f}_{2}\left({x}_{0}\right)\right)$ in 3D.