Skip to main content

Interpolate

Polynomial fitting of a set of data.

Syntax

interpolate(List, List)
interpolate(List, List, Identifier)
interpolate({Point, ..., Point})
interpolate({Point, ..., Point}, Identifier)
interpolate(Relation)
interpolate(Relation, Identifier)

Description

Given two lists X={x1,...,xn} and Y={y1,...,yn}, returns a polynomial of degree n-1 such that p(xi)=yi.

polynomials.interpolate1.calc.png

Given two lists X={x1,...,xn}X = \lbrace x_1, ..., x_n \rbrace and Y={y1,...,yn}Y = \lbrace y_1, ..., y_n \rbrace and an identifier t, returns a polynomial p(t) of degree n-1n-1 such that p(xi)=yip(x_i)=y_i.

polynomials.interpolate2.calc.png

Given a set of points Pi=xi,yi, i=1...n, returns a polynomial of degree n-1n-1 such that p(xi)=yip(x_i)=y_i.

polynomials.interpolate3.calc.png

Given a set of points Pi=xi,yiP_i = \left( x_i, y_i \right), i=1...ni = 1...n, and an identifier tt, returns a polynomial p(t)p(t) of degree n-1n-1 such that p(xi)=yip(x_i)=y_i.

polynomials.interpolate4.calc.png

Given a relation {x1y1,...,xnyn}, returns a polynomial of degree n-1n-1 such that p(xi)=yip(x_i)=y_i.

polynomials.interpolate5.calc.png

Given a relation {x1y1,...,xnyn}\lbrace x_1 \rightarrow y_1, ..., x_n \rightarrow y_n \rbrace and an identifier tt, returns a polynomial p(t)p(t) of degree n-1n-1 such that p(xi)=yip(x_i)=y_i.

polynomials.interpolate6.calc.png