Documentation

  • Demos
  • Visit our website
  • Contact us
  • CalcMe

    • Home
    • CalcMe
    • CalcMe

    Instrucciones de análisis matemático

    Reading time: 4min

    Repaso instrucciones básicas

    Dada la función f left parenthesis x right parenthesis equals fraction numerator 2 x cubed minus 5 x squared plus 4 x plus 1 over denominator 2 x squared minus x minus 1 end fraction, te plantean un ejercicio para encontrar una serie de propiedades que te permitirán representarla gráficamente a mano. Académicamente, te servirá para repasar algunos comandos básicos relacionados con el mundo de el análisis.

    example_1.png

    Para resolver la primera pregunta, debes utilizar el comando dominio y calcular los límites mediante el icono presente en la sección Cálculo del Menú lateral. Fíjate cómo coinciden los puntos que se encuentran fuera del dominio de la función con las raíces del denominador.

    calc.example.1.calc.png

     

    La segunda cuestión es más sencilla de resolver con las herramientas vistas en la pregunta anterior. El hecho que este límite sea igual a 0 nos garantiza que la recta y equals x minus 2 es asíntota oblicua de la función inicial.

    calc.example.2.calc.png

     

    Para resolver la tercera pregunta, simplemente debes derivar la función inicial utilizando el apóstrofo. Si lo prefieres, también la puedes encontrar utilizando la acción presente en la barra superior o el comando derivar. Observa que si quieres calcular a mano estas derivadas deberás utilizar la regla de derivación de un cociente.

    calc.example.3.calc.png

     

    Puedes resolver las ecuaciones planteadas igualando la expresión a 0 o utilizando el comando resolver indistintamente. Dar nombres a las soluciones te permite guardarlas en memoria y utilizarlas en cálculos posteriores utilizando más decimales de los que CalcMe muestra en pantalla.

    calc.example.4.calc.png

     

    La quinta pregunta se resuelve evaluando la segunda derivada de la función en los puntos críticos encontrados anteriormente. Si ésta es positiva en el punto, se tratará de un mínimo relativo. Por contra, si es negativa, se tratará de un máximo relativo.

    Por otro lado, si quieres encontrar los intervalos de crecimiento y decrecimiento, deberás ver cuando la función derivada es negativa (función decreciente) y cuando es positiva (función creciente). Estos intervalos quedan delimitados por los extremos relativos y puntos fuera del dominio.

    calc.example.5.calc.png

     

    En cuanto a los puntos de inflexión, sólo debes comprobar que el punto que anulaba la segunda derivada no anule también la tercera, como es el caso. Por tanto, c equals 0.27788 será un punto de inflexión.

    calc.example.6.calc.png

     

    Por último, te falta representar la función y sus asíntotas.

    calc.example.7.calc.png
    calc.example.7.plotter0.calc.png

    Repaso de integrales

    Dado un conjunto de funciones, puedes utilizar CalcMe para encontrar el área de la región comprendida entre ellas y dibujarla. Para hacerlo, necesitarás encontrar los extremos de integración y comprobar qué función es más grande en el intervalo en cuestión.

    example_2.png

    Dadas las funciones y equals sin left parenthesis x right parenthesis y y equals 2 times sin left parenthesis x right parenthesis times cos left parenthesis x right parenthesis,quieres encontrar el área de la región comprendida entre ellas desde el origen hasta al primer punto donde se cortan con abscisa positiva. Al buscar los puntos de corte, puedes comprobar que el primero es x equals straight pi over 3. Por tanto, deberás calcular la integral entre 0 y straight pi over 3 de la función que vaya por encima (y equals 2 times sin left parenthesis x right parenthesis times cos left parenthesis x right parenthesis) menos la que vaya por debajo (y equals sin left parenthesis x right parenthesis).

    calc.example1.1.calc.png

     

    Dadas esta vez las funciones y equals negative x squared plus 2 x e y equals x squared minus 2 x plus 2, quieres encontrar el área de la región comprendida entre el eje OY (x equals 0) y ambas funciones. Como antes, debes buscar su intersección y calcular la integral entre 0 y dicho punto. En esta ocasión, y equals x squared minus 2 x plus 2 va por encima y y equals negative x squared plus 2 x, por debajo.

    calc.example1.2.calc.png

     

    Al representar estas regiones, tienes dos opciones. En caso que la región que quieres pintar esté encapsulada entre dos funciones, simplemente debes utilizar el comando región indicando las funciones y el intervalo que quieres que represente.

    calc.example1.3.calc.png
    calc.example1.3.plotter0.calc.png

     

    Por otro lado, si la región a representar no está propiamente entre dos funciones, puedes intersecar directamente las inecuaciones necesarias y dibujarla utilizando la acción dedicada.

    calc.example1.4.calc.png
    calc.example1.4.plotter0.calc.png

    Optimización

    Dada una función cualquiera, con una gran variedad de propósitos, te puede interesar encontrar su máximo y su mínimo en un intervalo dado. Con CalcMe puedes encontrarlos fácilmente, simplemente debes evaluar la función en sus puntos críticos y en los extremos del intervalo de posibles valores.

    example_3.png

    Dado el modelo del índice de precio de los alimentos I left parenthesis t right parenthesis equals 0.00009045 times t to the power of 5plus 0.001438 times t to the power of 4negative 0.0656 times t cubedplus 0.4598 times t squarednegative 0.6270 times tplus 99.33, quieres encontrar el momento de los seis primeros años cuando la comida ha sido más barata y cuando ha sido más cara. Al buscar su derivada e igualarla a cero, verás que hay puntos fuera del intervalo que no deberás tener en cuenta. Por tanto, sólo queda evaluar la función en los puntos en cuestión y ver cuando es más grande y cuando es más pequeña.

    calc.example2.1.calc.png

     

    Repitiendo el mismo ejercicio pero en los doce primeros años, debes añadir x equals 11.043 a la lista de candidatos a óptimo. De este modo, puedes observar como el mínimo se alcanza más tarde que en el primer caso.

    calc.example2.2.calc.png

    Taylor

    Dada una función cualquiera, puedes utilizar CalcMe para encontrar su polinomio de Taylor del grado que quieras centrado en un punto dado. Para hacerlo, puedes utilizar la fórmula o el comando taylor.

    example_4.png

    Dada la función g left parenthesis x right parenthesis equals ln left parenthesis 2 minus x squared right parenthesis, para empezar quieres calcular el polinomio de Taylor de grado 2 centrado en x equals 1. Puedes utilizar la fórmula y CalcMe encontrará los coeficientes directamente.

    calc.example3.1.calc.png

     

    Dada la función g left parenthesis x right parenthesis equals ln left parenthesis 2 minus x squared right parenthesis, ahora quieres calcular el polinomio de Taylor de grado 7  centrado en el mismo punto. Puesto que la fórmula es muy larga, puedes optar por utilizar el comando taylor indicando la función en cuestión, la variable, el punto y el grado.

    calc.example3.2.calc.png

     

    Un vez vistas ambas aproximaciones, puedes plantearte representarlas gráficamente para ver qué relación mantienen con la función inicial.

    calc.example3.3.calc.png
    calc.example3.3.plotter0.calc.png

     

    Fíjate que como más elevado es el grado del polinomio de Taylor, más grande es el intervalo donde aproxima la función adecuadamente. En este ejemplo, la función azul aproxima adecuadamente al polinomio en el intervalo left parenthesis 0.8 comma 1.2 right parenthesis mientras que la roja la aproxima en el intervalo left parenthesis 0.6 comma 1.4 right parenthesis.

    Integración impropia

    Como ya has visto anteriormente, dado un conjunto de funciones, puedes utilizar la calculadora para encontrar el área de la región que delimitan. El proceso habitual es utilizar la regla de Barrow, es decir, encontrar una primitiva de la función en cuestión y evaluarla en los extremos de integración.

    A veces, cuando estos límites de integración se acercan a un número no real específico (plus infinity y negative infinity), hablamos de una integral impropia y debemos calcular el límite de una integral definida.

    example_5.png

    En primer lugar, dada la curva y equals left parenthesis square root of 5 minus square root of x right parenthesis squared, para encontrar el área de la región en cuestión será suficiente con calcular el punto de corte y la integral entre 0 y dicho punto.

    calc.example4.1.calc.png

     

    En segundo lugar, dada la curva y equals fraction numerator x squared minus 1 over denominator x squared plus 1 end fraction, para encontrar el área de la región en cuestión deberás calcular la integral con extremos de integración menos y más infinito de la asíntota horizontal menos la función. Puesto que los límites de integración se acercan a un número no real específico (plus infinity y negative infinity), se trata de una integral impropia.

    calc.example4.2.calc.png

     

    Por último, puedes calcular el área de la región acotada comprendida entre las dos curvas anteriores.

    calc.example4.3.calc.png
    calc.example4.3.plotter0.calc.png

    Transformada de Laplace

    Para terminar, CalcMe también te permite resolver EDOs con o sin condiciones iniciales utilizando el comando resolver. Al escribir la ecuación, debes pensar en introducir la función en cuestión mediante el icono presente en la sección Cálculo del Menú. De otro modo, CalcMe no entenderá que se trata de una ecuación diferencial.

    example_6.png

    Así, un vez especificadas las condiciones iniciales, CalcMe devuelve la función de una variable que satisface la EDO y las condiciones iniciales en cuestión.

    calc.example5.calc.png

    Was this article helpful?

    Yes
    No
    Give feedback about this article

    Related Articles

    • Guía Básica de CalcMe para la UOC
    • Crear y guardar una sesión de CalcMe
    • Instrucciones matemáticas básicas
    • Instrucciones de álgebra

    Instrucciones de análisis matemático

    Repaso instrucciones básicas Repaso de integrales Optimización Taylor Integración impropia Transformada de Laplace

    Making people’s STEM work more meaningful

    MathType

    • MathType for Office Tools
    • MathType for Mac
    • MathType for Microsoft 365
    • MathType for Google Workspace
    • MathType for LMS
    • MathType for XML Editors
    • Arabic notation
    • Our products accessibility
    • MathType is online

    WirisQuizzes

    Learning Lemur

    Solutions for Education

    • Blackboard Learn
    • Brightspace by D2L
    • Canvas
    • Google Classroom
    • Moodle
    • Schoology

    Solutions for Publishing Houses

    Solutions for Technical Writers

    Solutions for Chemistry

    Integrations

    • HTML Editors
    • MathType in WordPress

    Pricing

    Company

    Careers

    Blog

    Contact Us

    Buy Now

    Plugin Downloads

    © Wiris 2025

    • Cookie Preferences
    • Cookie Policy
    • Terms of Use
    • Privacy Policy / GDPR
    • Student Data Privacy
    • Compliance
    • Powered by Helpjuice
    Expand