Documentation / LearningLemur

  • Demos
  • Visit our website
  • Contact us
  • MathType

    • Wiris Quizzes

      • Learning Lemur

        • CalcMe

          • MathPlayer

            • Store FAQ

              • VPAT for the electronic documentation

                • MathFlow

                  • BF FAQ

                    • Miscellaneous

                      • Wiris Integrations

                        • Home
                        • Learning Lemur
                        • Basic guide to Learning Lemur
                        • Using advanced logic
                        • Glossary of commands
                        • Glossary of commands

                        Linear algebra

                        Reading time: 2min

                        This section provides a robust set of functions for working with linear algebra concepts, including matrices, vectors, and their properties. You can define and manipulate matrices, calculate their inverses, determinants, and transposes, and explore essential concepts like eigenvalues and dimensions. These tools are invaluable for creating problems in systems of equations, transformations, and other areas of linear algebra.

                        Example classroom uses

                        • Generate random matrices and ask students to find their inverse or transpose, setting logical conditions to check the correctness of their operations.
                        • Isolate specific columns of a matrix for analysis or manipulation in a problem.
                        • Construct and use diagonal matrices in problems involving transformations or scaling.
                        • Present a matrix and ask students to find its eigenvalues, or verify if a given value is an eigenvalue.
                        • Create problems where students need to determine the dimensions of a matrix or vector, or ensure that matrix operations are performed on compatible dimensions.

                        👉Need concrete examples? Check out the Examples section to see how these functions are used in real exercises. It’s a great place to see how to combine random value generation, conditions, and solution logic in context.

                         

                        Functions

                        adjoint_matrix

                        Given a matrix, computes its adjoint matrix.

                        adjoint_matrix(Matrix)
                         
                         

                        constant_matrix

                        Given two integers n and m and an expression e, constructs a matrix of dimensions n×m with all its entries equal to e.

                        constant_matrix(Integer, Expression)
                        constant_matrix(Integer, Integer, Expression)
                         
                         

                        constant_vector

                        Given an integer n and an expression e, constructs a vector of dimensions n with all its entries equal to e.

                        constant_vector(Integer, Expression)
                         
                         

                        determinant

                        Given a matrix A, computes its determinant.

                        determinant(Matrix)
                         
                         

                        diagonal_matrix

                        Given a list, range or vector L, constructs a diagonal matrix with the elements of L in the diagonal.

                        Given an integer n and an expression e, constructs a diagonal matrix of dimension n×n with coefficients equal to e.

                        diagonal_matrix(List | Range | Vector)
                        diagonal_matrix(Integer, Expression)
                         
                         

                        dimensions

                        Given a matrix, returns two numbers: the number of rows and the number of columns.

                        dimensions(Matrix)
                         
                         

                        eigenvalues

                        Given a matrix, this function returns a list with its eigenvalues over ℝ (repeated eigenvalues are not omitted).

                        eigenvalues(Matrix)
                         
                         

                        eigenvectors

                        Given a matrix, this function returns a matrix with its eigenvectors over ℝ disposed in columns.

                        eigenvectors(Matrix)
                         
                         

                        identity_matrix

                        Given an integer n, constructs the identity matrix of dimensions n×n.

                        identity_matrix(Integer)
                         
                         

                        inverse

                        Given a matrix, returns its inverse.

                        inverse(Matrix)
                         
                         

                        jordan

                        Given a matrix, returns the matrix J. If the option transformation_matrix is set to true, the output is a list with J and P.

                        jordan(Matrix)
                        jordan(Matrix, transformation_matrix=true

                        The Jordan decomposition of a matrix A is a change of basis where A is written into a diagonal or quasi-diagonal form: A=P-1JP, where P is the change of basis matrix and J is a matrix with the following structure

                        where λ1,...,λn are the eigenvalues of A.

                         
                         

                        linearly_independents?

                        Given a set of vectors v1,...,vn, returns true if they are linearly independents, and false otherwise.

                        linearly_independents?(Vector, ..., Vector)
                        linearly_independents?(List)
                         
                         

                        norm

                        Given a vector, returns its norm.

                        norm(Vector)
                         
                         

                        n_columns

                        Given a matrix, returns the number of columns.

                        n_columns(Matrix)
                         
                         

                        n_rows

                        Given a matrix, returns the number of rows.

                        n_rows(Matrix)
                         
                         

                        rank

                        Given a matrix, returns its rank.

                        rank(Matrix)
                         
                         

                        trace

                        Given a matrix, returns its trace.

                        trace(Matrix)
                         
                         

                        transpose

                        Given a matrix, returns its transpose.

                        transpose(Matrix)
                         
                         

                        vectorial_product

                        Given two vectors in , returns its vectorial product.

                        vectorial_product(Vector, Vector)
                         
                         

                        versor

                        Given a vector, returns its versor or normalized vector.

                        versor(Vector)
                         
                         

                        Was this article helpful?

                        Yes
                        No
                        Give feedback about this article

                        Related Articles

                        • Linear Algebra
                        • Abstract Algebra
                        • Complex numbers

                        Linear algebra

                        Example classroom uses Functions adjoint_matrix constant_matrix constant_vector determinant diagonal_matrix dimensions eigenvalues eigenvectors identity_matrix inverse jordan linearly_independents? norm n_columns n_rows rank trace transpose vectorial_product versor

                        Making people’s STEM work more meaningful

                        MathType

                        • MathType for Office Tools
                        • MathType for Mac
                        • MathType for Microsoft 365
                        • MathType for Google Workspace
                        • MathType for LMS
                        • MathType for XML Editors
                        • Arabic notation
                        • Our products accessibility
                        • MathType is online

                        WirisQuizzes

                        Learning Lemur

                        Solutions for Education

                        • Blackboard Learn
                        • Brightspace by D2L
                        • Canvas
                        • Google Classroom
                        • Moodle
                        • Schoology

                        Solutions for Publishing Houses

                        Solutions for Technical Writers

                        Solutions for Chemistry

                        Integrations

                        • HTML Editors
                        • MathType in WordPress

                        Pricing

                        Company

                        Careers

                        Blog

                        Contact Us

                        Buy Now

                        Plugin Downloads

                        © Wiris 2025

                        • Cookie Settings
                        • Cookie Policy
                        • Terms of Use
                        • Privacy Policy / GDPR
                        • Student Data Privacy
                        • Compliance
                        • Powered by Helpjuice
                        Expand