Documentation / CalcMe

  • Demos
  • Visit our website
  • Contact us
  • MathType

    • Wiris Quizzes

      • Learning Lemur

        • CalcMe

          • MathPlayer

            • Store FAQ

              • VPAT for the electronic documentation

                • MathFlow

                  • BF FAQ

                    • Home
                    • CalcMe
                    • Commands
                    • Linear Algebra
                    • Linear Algebra

                    Jordan

                    Reading time: 1min

                    The Jordan decomposition of a matrix A is a change of basis where A is written into a diagonal or quasi-diagonal form: A=P-1JP, where P is the change of basis matrix and J is a matrix with the following structure

                    where λ1,...,λn are the eigenvalues of A.

                    Syntax

                    jordan(Matrix)
                    

                    Description

                    Given a matrix, returns the matrix J. If the option transformation_matrix is set to true, the output is a list with J and P.

                    Options

                    Below is a complete list of options that may be used in the jordan function.

                    Option Description Format Default value
                    transformation_matrix We can choose if we want the output of the transformation matrix P or not. {transformation_matrix=true} transformation_matrix=false
                    exact_computations We can choose to perform or not exact computations. {exact_computations=false} true, but depends on the input

                    Was this article helpful?

                    Yes
                    No
                    Give feedback about this article

                    Related Articles

                    • Linear Algebra
                    • Adjoint matrix
                    • Canonic vector
                    • Characteristic matrix
                    • Characteristic polynomial

                    Jordan

                    Syntax Description Options

                    Making people’s STEM work more meaningful

                    MathType

                    • MathType for Office Tools
                    • MathType for Mac
                    • MathType for Microsoft 365
                    • MathType for Google Workspace
                    • MathType for LMS
                    • MathType for XML Editors
                    • Arabic notation
                    • Our products accessibility
                    • MathType is online

                    WirisQuizzes

                    Learning Lemur

                    Solutions for Education

                    • Blackboard Learn
                    • Brightspace by D2L
                    • Canvas
                    • Google Classroom
                    • Moodle
                    • Schoology

                    Solutions for Publishing Houses

                    Solutions for Technical Writers

                    Solutions for Chemistry

                    Integrations

                    • HTML Editors
                    • MathType in WordPress

                    Pricing

                    Company

                    Careers

                    Blog

                    Contact Us

                    Buy Now

                    Plugin Downloads

                    © Wiris 2025

                    • Cookie Preferences
                    • Cookie Policy
                    • Terms of Use
                    • Privacy Policy / GDPR
                    • Student Data Privacy
                    • Compliance
                    • Powered by Helpjuice
                    Expand