- 
                            
MathType
 - 
                            
Wiris Quizzes
 - 
                            
Learning Lemur
 - 
                            
CalcMe
 - 
                            
MathPlayer
 - 
                            
Store FAQ
 - 
                            
VPAT for the electronic documentation
 - 
                            
MathFlow
 - 
                            
BF FAQ
 - 
                            
Miscellaneous
 - 
                            
Wiris Integrations
 
Divisors mu Möbius
Reading time: 1minMöbius inversion formula states that if g and f are arithmetic functions satisfying
g(n)=∑d|nf(d)
for every integer n≥1, then
f(n)=∑d|nμ(d)g(nd)
for every integer n≥1, where μ(d) is the Möbius function. Phi Euler's function satisfies
n=∑d|nφ(d)
Then, applying Möbius inversion formula we can write
φ(n)=∑d|nμ(d)nd=n∑d|nμ(d)≠01μ(d)·d
Syntax
divisors_mu_moebius(Integer)
Description
Given an integer n, returns a list with the divisors of n multiplied by μ(d).
