Documentation / CalcMe

  • Demos
  • Visit our website
  • Contact us
  • MathType

    • Wiris Quizzes

      • Learning Lemur

        • CalcMe

          • MathPlayer

            • Store FAQ

              • VPAT for the electronic documentation

                • MathFlow

                  • BF FAQ

                    • Miscellaneous

                      • Home
                      • CalcMe
                      • Commands
                      • Geometry
                      • Geometry

                      Ellipse

                      Reading time: 1min

                      Constructs an ellipse. The equation of an ellipse with center at point (c1,c2) with axes parallel to x- and y-axis is 

                      Syntax

                      ellipse(Real, Real, Point)
                      
                      ellipse(Real, Real, Vector)
                      
                      ellipse(Real, Real)
                      
                      ellipse(Real, Real, Point, Vector)
                      
                      ellipse(Real, Real, Point, Real)
                      
                      ellipse(Real, Real, Real)
                      

                      Description

                      Given two reals a and b and a point C, constructs an ellipse with semi-major axis a, semi-minor axis b and center C.

                      Given two reals a and b and a vector v, constructs an ellipse in the direction of v, with semi-major axis a, semi-minor axis b and center the origin.

                      Given two reals a and b, constructs an ellipse with semi-major axis a, semi-minor axis b and center the origin.

                      Given two reals a and b, a point C and a vector v, constructs an ellipse in the direction of v, with semi-major axis a, semi-minor axis b and center C.

                      Given two reals a and b, a point C and a real ω, constructs an ellipse in the direction given by the angle ω, with semi-major axis a, semi-minor axis b and center C.

                      Given three reals a, b and ω, constructs an ellipse in the direction given by the angle ω, with semi-major axis a, semi-minor axis b and center the origin.

                      Was this article helpful?

                      Yes
                      No
                      Give feedback about this article

                      Related Articles

                      • Geometry
                      • Amplitude
                      • Angle
                      • Append
                      • Arc

                      Ellipse

                      Syntax Description

                      Making people’s STEM work more meaningful

                      MathType

                      • MathType for Office Tools
                      • MathType for Mac
                      • MathType for Microsoft 365
                      • MathType for Google Workspace
                      • MathType for LMS
                      • MathType for XML Editors
                      • Arabic notation
                      • Our products accessibility
                      • MathType is online

                      WirisQuizzes

                      Learning Lemur

                      Solutions for Education

                      • Blackboard Learn
                      • Brightspace by D2L
                      • Canvas
                      • Google Classroom
                      • Moodle
                      • Schoology

                      Solutions for Publishing Houses

                      Solutions for Technical Writers

                      Solutions for Chemistry

                      Integrations

                      • HTML Editors
                      • MathType in WordPress

                      Pricing

                      Company

                      Careers

                      Blog

                      Contact Us

                      Buy Now

                      Plugin Downloads

                      © Wiris 2025

                      • Cookie Settings
                      • Cookie Policy
                      • Terms of Use
                      • Privacy Policy / GDPR
                      • Student Data Privacy
                      • Compliance
                      • Powered by Helpjuice
                      Expand